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Abstract
Introducing correct and optimal OpenMP parallelization di-
rectives in applications is a challenge. To parallelize a loop in
an input application code automatically, parallelizing compil-
ers need to disprove dependences with respect to variables
across iterations of the loop. Performing such dependence
analysis in the presence of index arrays or subscripted sub-
scripts – a[b[i]] – has long been a challenge for automatic
parallelizers. Loops with subscripted subscripts can be paral-
lelized if the subscript array is known to possess a property
such as monotonicity. This paper presents a compile-time
algorithm that can analyze complex recurrence relations
and determine irregular or intermittent monotonicity of one-
dimensional and monotonicity of multi-dimensional sub-
script arrays. The new algorithm builds on a prior approach
that is capable of analyzing simple recurrence relations and
determining monotonic one-dimensional subscript arrays.
Experimental results show that the proposed array analysis
algorithm can substantially improve the performance of ten
out of twelve or 83.33% of the benchmarks evaluated, 25-
33.33% more than state-of-the-art compile-time automatic
parallelization techniques.
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1 Introduction
The solution of sparse linear systems is the most computa-
tionally intensive part of many scientific applications [11, 17].
Methods for the direct solution of a sparse linear system rely
on matrix factorization. Such algorithms, coupled with the
storage format of the sparse matrix in memory, lead to the
use of indirection arrays, resulting in subscripted subscript
patterns. These program patterns are also observed in deep
learning kernels [45], adaptive mesh refinement applications
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and molecular dynamics simulations [13]. Figure 1 shows
an example subscripted subscript loop. In loops with cross-
iteration accesses to the host or subscripted array, current
dependence testing methods conservatively assume depen-
dences with respect to the host array, as compile-time analy-
sis techniques fail to gather information about the subscript
array. The information can be a property or range of pos-
sible values of the array and can be determined from the
program code itself. We have developed a compile-time al-
gorithm capable of performing such analysis and detecting
monotonicity of the subscript array, which in turn can be
used to prove the absence of data dependences in loops that
involve subscript arrays. The algorithm builds on a method
introduced in [5]1 and has been fully implemented in the
Cetus automatic parallelizer [4], which represents the state
of the art in automatic parallelization.

1 for ( j = 0 ; j < numPlaced ; j ++)
2 y [ ind [ j ] ] += gamma2 [ i ] ∗ exp ( − ( ( xdos [ ind [ j ] ] − t ) ∗
3 ( xdos [ ind [ j ] ] − t ) ) / s igma2 ) ;

Figure 1. Example Subscripted subscript loop from the EVSL
library [19]. Values of array ind appear at the subscript of
array y on line 2.

In our hand analysis of application codes with subscripted
subscript loops we observed that, in a class of programs, the
subscript array assumes a property such as monotonicity,
when the array is assigned values in statements that for-
mulate recurrence relationships. Example loops with such
recurrence relations are shown in Figures 2 and 3. A common
characteristic of the sequences created by these relations is
that the current value in the sequence is computed by adding
a Positive or Non-Negative (PNN) value or value range to
the immediately preceding value. Two types of loops can
assign monotonic values to a one-dimensional array. Loops
shown in Figure 2 comprise recurrence relations wherein
the subscript array (array a) is assigned monotonic values
in contiguous loop iterations. The method of [5] is capable
of handling such loops and determining monotonicity. The
recurrence relation in the loop of Figure 3(a) assigns mono-
tonic values to array a in non-contiguous or intermittent
loop iterations. Furthermore, the recurrence relation in the
loop of Figure 3(b) leads to monotonic multi-dimensional
1Also referred to as the prior approach and Base Algorithm in this paper.
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subscript arrays. This work presents an array analysis algo-
rithm that is capable of determining regular or continuous
as well as irregular or intermittent monotonicity of a one-
dimensional subscript array. In addition, the algorithm can
determine monotonicity of multi-dimensional subscript ar-
rays in complex loop patterns.

p = 0 ;
for ( i 1 =0 ; i 1< n ; i 1= i 1 + 1 ) {
𝑆1 : a [ i 1 ] = p ;

. . .
for ( i𝑛 =0 ; i𝑛< m; i𝑛= i𝑛 + 1 ) {

i f ( c o n d i t i o n ) {
𝑆2 : p = p + 1 ;

}
}

}

(a)

a [ 0 ] = 0 ;
for ( i 1=P1 ; i 1< n ; i 1= i 1 + 1 ) {

a [ 𝑓 ( i 1 ) ] = a [ 𝑓 ( i 1 ) −1] + k ;
}

(b)

Figure 2. Generalized forms of loops with recurrence rela-
tions that can be handled by the method of [5]. The recur-
rence statements assign values to index array a. For the loop
in (b), the subscript expression of array a, i.e. 𝑓 (𝑖1), is a linear
expression and can be either 𝑖1 + 1 or 𝑖1 depending on the
initial value of 𝑖1, i.e 𝑃1, being 0 or 1.

ind = 0 ;
for ( i 1 =0 ; i 1< n ; i 1= i 1 + 1 ) {

i f ( c o n d i t i o n ) {
a [ ind ] = i 1 ;
i nd = ind + 1 ;

}
}

(a)

for ( i 1 =0 ; i 1< n ; i 1= i 1 + 1 ) {
. . .
for ( i𝑛 =0 ; i𝑛< m; i𝑛= i𝑛 + 1 ) {
a [ i 1 ] . . . [ i𝑛 ] = 𝛼∗ i 1 +[ r l : ru ] ;

/ /𝛼+ r l ≥ ru
}

}

(b)

Figure 3. Generalized forms of loops with recurrence rela-
tions that can be handled by the new array analysis algorithm
in addition to the recurrences in Figure 2.

Our algorithm proceeds in two phases. Phase-1 determines
an expression that represents the effect of symbolic execution
of an arbitrary loop iteration on the value of the subscript
array. Two important capabilities of the Phase-1 algorithm
enable the determination of array properties in Phase-2:

1. Ability to analyze statements that assign values to an
array under an if-condition and

2. Ability to analyze and simplify symbolic expressions
that assign values to elements of a multi-dimensional
array.

Phase-2 aggregates the Phase-1 expressions across loop
iterations, determining the effect of the loop as well as tests
for subscript array properties. The Phase-2 algorithm builds
on two concepts that are at the core of the method of [5] –
Simple Scalar Recurrence (SSR) and Scalar Recurrence Array
Assignments (SRA). The SSR concept determines monotonic

scalar variables (referred to as SSR variables), whereas SRA
determines monotonic one-dimensional arrays assigned the
values of an SSR variable in continuous loop iterations. Both
SSR and SRA can be observed in the recurrence relations
in the loop of Figure 2(a) (Statements S2 and S1). Our algo-
rithm builds on these concepts by providing a mechanism
to analyze and represent recurrence expressions in SSR vari-
ables that (a) assign values to a one-dimensional array in
intermittent loop iterations and (b) assign values to a multi-
dimensional subscript array. The properties determined by
the analysis algorithm are used by an extended data de-
pendence test to prove non-overlap in the loops where the
subscript arrays appear. The extended data dependence test
will be discussed in a forthcoming contribution.

Various techniques have been proposed in the literature to
gather information about subscript arrays and parallelize the
loops using them. Compile-time techniques involve the use
of patternmatching [1, 20, 21] or user-defined assertions [24–
26] and have not been fully automated. Proposed run-time
techniques make use of an inspector-executor scheme [40]
or speculative execution [8, 36]. Though powerful, a major
drawback of these techniques is the involved overhead which
adds to the execution time of the application. By contrast,
our approach uses compile-time analysis, avoiding run-time
overheads.

In summary, this paper makes the following contributions:

• We present two novel concepts for analyzing array
properties – intermittent monotonicity and monotonic
multi-dimensional arrays.
• We discuss a new compile-time algorithm capable of
analyzing complex recurrence relations and determin-
ing monotonicity of subscript arrays, which is suffi-
cient for automatically parallelizing a class of irregular
applications.
• We present experimental results comparing the per-
formance impact of the new array analysis algorithm,
the state of the art technique of [5] and the classical
automatic parallelization techniques on a set of bench-
marks from popular benchmark suites.

2 Compile-time Subscript Array Analysis
This section presents a compile-time algorithm capable of de-
termining a property for the subscript array (one-dimensional
or multi-dimensional). We start by defining the important
subscript array properties observed in application codes. Re-
call from Section 1 that we found the properties to be present
in the programs and not dependent on program input data.

2.1 Subscript Array Properties
In our analysis of application codes from various bench-
mark suites we found that loops with subscripted subscript
patterns can often be parallelized, if the subscript array is
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known to be monotonic. In some cases, Non-Strict Mono-
tonicity suffices, whereas, in other cases, the subscript array
is required to be Strictly Monotonic or Injective. Monotonic-
ity of one-dimensional arrays is well defined in the litera-
ture [5, 25, 43]. We will define the monotonicity property of
multi-dimensional arrays.
Definition 1: Monotonic Multi-Dimensional Arrays
For an n-dimensional array a (n>1), if {a[𝑖] [∗] [∗] ...[∗]𝑛
= [lb:ub]} and {a[𝑖′] [∗] [∗]...[∗]𝑛 = [lb′:ub′]}, and if [lb:ub]
≤ [lb′:ub′], ∀i < i′, then array a is said to be monotonic
w.r.t. the dimension at the first position or dimension in-
dexed by i. If [lb:ub] < [lb′:ub′], array a is said to be strictly
monotonic. The value range [lb:ub] is less than [lb′:ub′], if
ub<lb′. We also refer to this type of Monotonicity as Range-
Monotonicity. Note that (∗) means any legal value.

2.2 Algorithm Overview
Our algorithm determines the properties described in the
previous section by proceeding in program order, analyzing
the loops in each nest from inside out. At each loop level,
two phases analyze the values of the variables of interest.
These are: loop-variant integer scalars and integer arrays
(arrays with loop-invariant subscript expressions are treated
as scalars). Loops containing function calls with side effects
(Certain C standard library function calls are considered side-
effect free by Cetus [2, 34]) and break statements are consid-
ered ineligible for analysis. All eligible loops are normalized,
with each statement making at most one assignment, and
induction variables having been substituted. Iteration spaces
of normalized loops start at 0 and are stride-1. The loop
variable represents the iteration number.

2.3 The Phase-1 Algorithm
Phase-1 determines the effect of executing an arbitrary loop
iteration on the value of a Loop Variant Variable – LVV. The
algorithm computes the values of LVVs at the end of the loop
iteration relative to the beginning. It represents this value in
the form of a symbolic range expression – [lb:ub] (inclusive),
where the lower bound lb and upper bound ub are symbolic
expressions.

The representation is stored in a Symbolic Value Dictionary
(SVD). The SVD is an extension of the Range Dictionary used
by Cetus’ Range Analysis capability [7] and is a mapping of
an LVV to its symbolic range expression. The representation
can store a set of such ranges, in case more than one expres-
sion assign values to the LVV. The value expression(s) may
include the loop index, constants (loop-invariant symbolic
terms) and LVVs. Our algorithm makes use of the symbolic
range propagation scheme [7], which collects and propagates
variable ranges through the program.

The Phase-1 algorithm operates on the ControlFlowGraph
(CFG) of the loop body which is a Directed Acyclic Graph
(DAG). Each node in the CFG represents a statement in

the loop body and the edges represent the control flow. In-
ner loops are represented by a single, collapsed node, as
described in Phase-2. The algorithm performs a forward
dataflow traversal of the CFG in topological order. At the
first node, LVVs are initialized to _, representing their value
at the beginning of the loop iteration being analyzed. At
control-flow merge points values take a conservative union
of the predecessors (may semantics). At control-flow diverge
points, the values are tagged with the relevant if-condition.
Each node updates the current value of an LVV to reflect the
effects of symbolic execution of the statement it represents.
The values are stored in SVDs corresponding to each node.
The LVV values at the last node represent the result of the
Phase-1 algorithm.

1: m=0;
2: for(j=0; j<npts; j++){
3: if((xdos[j] - t) < width)
4: ind[m++] = j;
5: }

(a)

1: m=0;
2: for (j=0; j<npts; j=j+1) {
3: if ((xdos[j] - t) < width){
4: _temp_0 = m;
5: m = (m+1);
6: ind[_temp_0] = j;
7: }
8: }

(b)

Figure 4. Example code, showing (a) the loop to be analyzed;
(b) the Cetus-normalized [4] version of the loop.

j < npts;

{𝑖𝑛𝑑 [_𝑡𝑒𝑚𝑝_0] = _𝑖𝑛𝑑 ,𝑚 = _𝑚, _𝑡𝑒𝑚𝑝_0 = __𝑡𝑒𝑚𝑝_0 }

if ( (xdos[j ] − t ) < width)
{𝑖𝑛𝑑 [_𝑡𝑒𝑚𝑝_0] = _𝑖𝑛𝑑 ,𝑚 = _𝑚, _𝑡𝑒𝑚𝑝_0 = __𝑡𝑒𝑚𝑝_0 }

_temp_0=m;

{𝑖𝑛𝑑 [𝑚] = _𝑖𝑛𝑑 ,𝑚 = _𝑚, _𝑡𝑒𝑚𝑝_0 = ⟨𝑚⟩}

m=(m+1) ;

{𝑖𝑛𝑑 [𝑚] = _𝑖𝑛𝑑 ,𝑚 = ⟨_𝑚 + 1⟩, _𝑡𝑒𝑚𝑝_0 = ⟨𝑚⟩}

ind[_temp_0]=j;

{𝑖𝑛𝑑 [𝑚] = ⟨ 𝑗 ⟩,𝑚 = ⟨_𝑚 + 1⟩, _𝑡𝑒𝑚𝑝_0 = ⟨𝑚⟩}

j=j+1 {𝑖𝑛𝑑 [𝑚] = [_𝑖𝑛𝑑 , ⟨ 𝑗 ⟩ ],𝑚 = [_𝑚, ⟨1 + _𝑚 ⟩ ] }

Figure 5. CFG of the body of the loop in Figure 4(b) after
Phase-1 analysis. The results of Phase-1 are stored in the SVD
at each node. The representation ⟨expr⟩ is used to represent
a value expression expr tagged with the relevant if-condition.

Example: For the loop in Figure 4(a), the Cetus-normalized
version of the loop is shown in Figure 4(b). Figure 5 shows the
CFG of the loop body along with the results of Phase-1. The
algorithm determines the following symbolic expressions
for the LVVs for an arbitrary loop iteration j:

SVD𝑠𝑡𝑛 ←− {ind[m] = [_𝑖𝑛𝑑 ,⟨ j⟩], m=[_𝑚 ,⟨1 + _𝑚⟩]}
3
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where SVD𝑠𝑡𝑛 is the SVD corresponding to the final node
in the loop body CFG i.e. j=j+1. The tagged sub-expressions
⟨ j⟩ and ⟨1 + _𝑚⟩ represent the values assigned to ind and m
under the if-condition on line 3 of Figure 4(b).

2.4 Phase-2 Concepts
Phase-2 – the aggregation phase – extends the Phase-1 ex-
pressions to the full loop iteration space and tests for array
properties. Aggregation reasons about mathematical rela-
tionships of the value of variables from one iteration to the
next. Recurrence relations are of particular interest. We first
introduce the concepts behind the base array analysis algo-
rithm [5] (state of the art concepts) to determine monotonic-
ity of LVVs. We then introduce the novel concepts imple-
mented in the new array analysis algorithm and discuss how
these concepts build on the capabilities of the base algorithm.

2.4.1 State of the Art Concepts. We describe two impor-
tant concepts that are at the core of the base algorithm – (1)
Simple Scalar Recurrence (SSR) and (2) Scalar Recurrence
Array Assignments (SRA). These two concepts enable the
determination of regular or continuous monotonicity of one-
dimensional arrays. The method considers a normalized loop
with iteration variable i, lower bound 0, and N iterations. _𝑧
andΛ𝑧 refer to the values of variable z at the beginning of the
loop iteration and at the beginning of the loop, respectively.
The representation PNN is used as a placeholder for either a
Positive (P) or Non-Negative (NN) term in an expression. If
consecutive elements in a sequence differ by an NN term, the
sequence is monotonic; if all differences are P, the sequence
is strictly monotonic.

1. Concept of Simple Scalar Recurrence (SSR): recognizes
the form sc = sc + k, where k is a loop-invariant PNN
value or value range. The aggregated value of sc in
this case is Λ𝑠𝑐 + N∗k, as computed by Phase-2. sc is
monotonic if k is non-negative. If k is positive, sc is
strictly monotonic.

2. Concept of Scalar RecurrenceArrayAssignments (SRA):
deals with the form ar[𝑖] = ssr_expr. The value of an
SSR expression is assigned to the current array ele-
ment. The SSR expression can be an SSR variable plus
a PNN term. E.g. ssr_expr = sc + const, where sc is the
SSR variable and const is a PNN term.
The MA notation facilitates the aggregation of mono-
tonic array sections of type SRA:

Definition 2: Monotonic Assignment (MA)
Given an SSR variable sr, the array assignment ap[0:N-
1] = sr#MA means that array ap in the index range
[0:N-1] gets assigned values of sr in a way that is
monotonic, i.e. ap[i] ≤ ap[i+1]. If sr is strictly mono-
tonic ap[0:N-1] = sr#SMA and, ap[i] < ap[i+1].

Using Definition 2, the aggregated expression for ar
can be expressed as:

𝑎𝑟 [0 : 𝑁 − 1] =


sc#MA + const, if 𝑠𝑐 is Monotonic
sc#SMA + const, if 𝑠𝑐 is Strictly Monotonic
⊥, otherwise

(1)

where ⊥ refers to an unknown value or value range.
Substituting the aggregated value of sc in equation (1)
results in:

𝑎𝑟 [0 : 𝑁 − 1] =
{
(Λsc + N ∗ [lbk : ubk ] )#MA + const
(Λsc + N ∗ [lbk : ubk ] )#SMA + const

(2)

where the range [lb𝑘 :ub𝑘 ] is the value range for k.

2.4.2 Novel Concepts. The new array analysis algorithm
builds on the concepts mentioned above and implements
two novel concepts – intermittent monotonicity of one-
dimensional arrays and monotonicity of multi-dimensional
subscript arrays.

1. Intermittent Monotonic Sequence
An Intermittent Monotonic Sequence (IM(S𝑛)) is a
sequence that takes on values of a regular (or base)
Monotonic Sequence (S𝑛) at irregular intervals.

Given the base Monotonic sequence,
S𝑛 = {a0, a1, a2, a3, a4, a5...}, where a𝑗+1>a𝑗 , ∀j ∈ N then,
(IM(S𝑛)) = {a𝑗 , a𝑗+𝑝 , a𝑗+𝑝+𝑞 , a𝑗+𝑝+𝑞+𝑟 , ...}, where {p, q, r,
...} ∈ N is an intermittent sequence over that base and
(IM(S𝑛)) ⊂ S𝑛 .

An intermittent sequence is typically generated by
a loop containing a loop-variant if-condition, under
which the value of 𝑆𝑛 is assigned to a variable (typically
an array) holding the intermittent sequence. The same
if-condition may also serve to count the element num-
ber of the intermittent sequence. The base sequence
may be formed by an induction variable (often the loop
index) or a closed-form expression.

LEMMA 1: Given a loop with N iterations that makes
the following assignments under a loop-variant if-condition:
- (array) inseq[ic] = j
- (scalar) ic = _𝑖𝑐 + 1

then, if j is an SSR variable, array inseq will assume
monotonic values but at irregular intervals (intermit-
tent sequence). If j is strictly monotonic, array inseq
will be strictly monotonic. The intervals are defined by
the iterations in which the if-condition is true. Scalar
ic counts the element number in the intermittent se-
quence and assumes the contiguous range [0 : 𝑖𝑐𝑚𝑎𝑥 ],
where ic𝑚𝑎𝑥 represents the value of ic after the loop and
0 <= 𝑖𝑐𝑚𝑎𝑥 <=N.

After aggregation, per LEMMA 1, array inseq is known
to be monotonic. Using Definition 2, the aggregated
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expression for inseq can be expressed as:

𝑖𝑛𝑠𝑒𝑞 [0 : 𝑖𝑐𝑚𝑎𝑥 ] =


j#MA, if 𝑗 is Monotonic
j#SMA, if 𝑗 is Strictly Monotonic
⊥, otherwise

(3)

Substituting the value range for j in the above expres-
sions yields:

𝑖𝑛𝑠𝑒𝑞 [0 : 𝑖𝑐𝑚𝑎𝑥 ] =


[lbj : ubj ]#MA, if 𝑗 is Monotonic
[lbj : ubj ]#SMA, if 𝑗 is Strictly Monotonic
⊥, otherwise

(4)

2. Monotonic Multi-dimensional Arrays
LEMMA 2: Given a loop with N iterations that makes
the following assignments to an n-dimensional array ax
in iteration ‘i’:
- (array) ax[𝑖] [∗] [∗] ...[∗]𝑛 = 𝛼 ∗ 𝑖 + [rl:ru]
where 𝛼 is a loop-invariant scalar,
then, if the range [rl:ru] is a PNN range and if 𝛼+rl ≥ ru,
array ax will be monotonic w.r.t. the first dimension or
dimension indexed by i. If 𝛼+rl > ru, ax will be strictly
monotonic. The same holds if the dimension indexed by
𝑖 is in any other than the first position.

The aggregated expression for array ax in this case
will be: ax[0:N-1] [∗] [∗] ...[∗]𝑛 =
𝛼 ∗ [0 : N − 1]#(MA;DIM ) + [rl : ru], if 𝛼 + rl ≥ ru.
𝛼 ∗ [0 : N − 1]#(SMA;DIM ) + [rl : ru], if 𝛼 + rl > ru.
⊥, otherwise

(5)

whereDIM is an integer value and refers to the position
of the dimension w.r.t. which monotonicity exists.

2.5 The Phase-2 Algorithm
This section presents an overview of the Phase-2 algorithm
for determining monotonicity of LVVs. The algorithm imple-
ments both the state of the art and novel concepts discussed
in the previous section. We describe the implementation of
the novel concepts in the new algorithm.
Figure 6 shows the driver algorithm for Phase-2. The al-

gorithm determines the monotonicity property of an LVV
(v) by analyzing R𝑣 (expression for v after Phase-1). For R𝑣 ’s
comprising both tagged and untagged sub-expressions, the
algorithm considers only the tagged expressions for anal-
ysis (lines 9-10). If v is an SSR variable (lines 12-14), the
algorithm adds v to the list of SSR variables (List_SSR_vars).
The loop index variable is known to be a strictly monotonic
SSR variable. To determine monotonicity of an array LVV,
the algorithm calls upon the function is_Mono_Array which
implements the novel concepts presented in Section 2.4.2.
Upon determining a property, the algorithm determines the
aggregated symbolic expression for v (lines 13 and 17).
Function is_Mono_Array is shown in Figure 7. The func-

tion detects the monotonicity property of one-dimensional

(intermittent) and multi-dimensional input arrays by analyz-
ing R𝑣 ’s comprising SSR variables. Statements on lines 10 to
16 determine intermittent monotonic arrays. The important
step in this case is the analysis of the if-conditions tagged to
R𝑠 (expression of s – the array subscript) and R𝑣 for equality
and loop variance (lines 13-15). The function returns true if
the tagged if-conditions are equal and loop variant. Function
Aggregate on line 17 of the driver algorithm determines the
aggregated symbolic expression for v depending on the prop-
erty Strict or Non-strict monotonicity of R𝑣 . The aggregated
expression is [0:N-1]#MA if R𝑣 is monotonic or [0:N-1]#SMA if
R𝑣 is strictly monotonic as per equation (4) in Section 2.4.2.

Algorithm 1: Phase-2
1 Input: 1. Loop control flowgraph (LG)
2 2. SVD of the final statement in LG (SVD𝑠𝑡𝑛 ) after Phase-1
3 3. Loop index (Idx), Iteration count (N), Range of Idx (LIR)
4 Output: 1. Aggregated symbolic expression for each LVV
5 2. Collapsed loop flowgraph (collap(LG))

6 Add (Idx : LIR) to SVD𝑠𝑡𝑛

7 List_SSR_vars←− (Idx)
8 for each (v, R𝑣 ) ∈ SVD𝑠𝑡𝑛 do
9 if (R𝑣 contains tagged sub-expression) then
10 R𝑣 ← Tagged sub-expression of R𝑣
11 if v is a Scalar then
12 if is_SSR(v, R𝑣 ) then
13 R𝑣 ← Aggregate(v, R𝑣 , N)
14 List_SSR_vars←− (v)

15 else
16 if is_Mono_Array (v, R𝑣 , List_SSR_vars, SVD𝑠𝑡𝑛 ) then
17 R𝑣 ← Aggregate(v, R𝑣 , N)
18 else
19 R𝑣 ← Simplified R𝑣 after substituting for all LVVs

20 SVD𝑠𝑡𝑛 ← (v : R𝑣 )

21 Determine final SVD𝑠𝑡𝑛 if LG is outermost
22 for each (v, R𝑣 ) ∈ SVD𝑠𝑡𝑛 do
23 collap(LG)← {v = R𝑣 }

24 Replace LG with collap(LG)

Figure 6. Phase-2 algorithm to determine aggregated sym-
bolic expressions for LVVs.

For multi-dimensional arrays, a symbolic range expres-
sion is used to assign values to elements of the array. The
expression is of the form 𝛼∗i+[rl:ru] where i is the loop index.
Statements on lines 21 to 29 of function is_Mono_Array ana-
lyze such expressions and determine monotonicity of a multi-
dimensional array. The function returns true if the inequality
𝛼+rl ≥ ru is satisfied as discussed in LEMMA2. Note that the
analysis is performed only if the array subscript expression is
a simple subscript (expressions of the form i+k; where i is the
loop index and k is a loop invariant scalar). The aggregated
expression in this case is – 𝛼∗[0:N-1]#(SMA;DIM)+[rl:ru], if 𝛼+rl
> ru or 𝛼∗[0:N-1]#(MA;DIM)+[rl:ru], if 𝛼+rl ≥ ru as per equation
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(5) in Section 2.4.2. After Phase 2, the loop is collapsed and
replaced by a single node (collap(LG)) containing a sequence
of assignment statements, representing the effect of the loop
on each LVV (lines 22-24 of the driver algorithm).

Algorithm 2: is_Mono_Array
1 Input: 1. An array LVV (v)
2 2. Value for 𝑣 after Phase-1 (R𝑣 )
3 3. List of SSR variables in the loop (List_SSR_vars)
4 4. SVD of the final statement in LG (SVD𝑠𝑡𝑛 ) after Phase-1
5 Output: Boolean true or false indicating if v is monotonic.

6 ssr_var← SSR variable in R𝑣
7 if ssr_var does NOT exist then
8 return false

9 s← Subscript expression of v
10 if (v is one dimensional) then
11 R𝑠 ← Tagged expression of s from SVD𝑠𝑡𝑛

12 if (s is scalar && R𝑠 is incremented by 1) then
13 Tag𝑠 ← If Condition tagged to R𝑠
14 Tag𝑣 ← If Condition tagged to R𝑣
15 if (Tag𝑠 and Tag𝑣 are equal and loop variant) then

/* Intermittent Monotonic array detected */

16 return true

17 else if s is simple subscript then
18 return true
19 else
20 return false

21 else if (v is multi-dimensional && s is simple subscript ) then
22 𝛼 ← coefficient of ssr_var
23 remainder← R𝑣 - 𝛼∗ssr_var
24 if remainder is NOT PNN then
25 return false

26 rl←− lowerbound of remainder
27 ru←− Upperbound of remainder
28 if (𝛼+rl ≥ ru) then

/* Monotonic Multi-dimensional array detected */

29 return true

30 else
31 return false

32 return false

Figure 7. Algorithm to determine intermittent monotonic
arrays as well as monotonic multi-dimensional arrays.

3 Examples
We demonstrate the effectiveness of our analysis techniques
by applying them to three scientific applications: Algebraic
Multi-Grid Solver (AMG) [22, 33, 44], the Sampled Dense-
Dense Matrix Multiplication (SDDMM) [28, 45] and the Un-
structured Adaptive (UA) Benchmark from the NAS Parallel
Benchmark (NPB) Suite v3.3.1 [12, 14].

3.1 Example 1- from AMG
The outermost 𝑖-loop of the loop nest shown in Figure 8 can
be parallelized, if array A_rownnz, whose values appear at

the subscript of array y_data on lines 4 and 7, is known to
be injective. Array A_rownnz is filled in the loop shown in
Figure 9. The Phase-1 algorithm analyzes the loop of Fig-
ure 9 and determines the following expressions forA_rownnz,
irownnz and adiag for one loop iteration:

Phase-1 (loop on line 2):
{A_rownnz[irownnz]=[_𝐴_𝑟𝑜𝑤𝑛𝑛𝑧 ,⟨i⟩],
irownnz=[_𝑖𝑟𝑜𝑤𝑛𝑛𝑧 ,⟨1+_𝑖𝑟𝑜𝑤𝑛𝑛𝑧⟩], adiag=A_i[i+1]-A_i[i]}

The algorithm tags the expressions i and 1+_𝑖𝑟𝑜𝑤𝑛𝑛𝑧 with
the if-condition on line 4 and analyzes these expressions in
Phase-2.
Variable i is an SSR variable and the value of _𝑖𝑟𝑜𝑤𝑛𝑛𝑧 is

incremented by 1. In addition, the tagged if-conditions are
equal and loop variant. Therefore, the algorithm determines
an intermittent monotonic relationship for array A_rownnz.
Since i is known to be strictly monotonic, array A_rownnz
is also strictly monotonic. The aggregated expressions for
A_rownnz and irownnz are as follows:

1 #pragma omp parallel for if(-1+num_rownnz<=irownnz𝑚𝑎𝑥 )
private(i, jj, tempx,m)

2 for (i = 0; i < num_rownnz; i++){
3 m = A_rownnz[i];
4 tempx = y_data[m];
5 for (jj = A_i[m]; jj < A_i[m+1]; jj++)
6 tempx += A_data[jj] * x_data[A_j[jj]];
7 y_data[m] = tempx;
8 }

Figure 8. Subscripted subscript loop to parallelize from the
AMGmk mini-application [22]. The loop multiplies a sparse
matrix with a dense vector.

1 irownnz = 0;
2 for (i=0; i < num_rows; i++){
3 adiag = A_i[i+1]-A_i[i];
4 if(adiag > 0)
5 A_rownnz[irownnz ++] = i;
6 }

Figure 9. Loop that fills in the subscript array A_rownnz
from the AMGmk mini-application.

Phase-2 (loop on line 2):
{A_rownnz[0:irownnz𝑚𝑎𝑥 ]=i#SMA,
irownnz=[Λ𝑖𝑟𝑜𝑤𝑛𝑛𝑧 :Λ𝑖𝑟𝑜𝑤𝑛𝑛𝑧+num_rows],adiag=⊥}
Here, irownnz𝑚𝑎𝑥 in the aggregated subscript expression

of array A_rownnz represents the value of irownnz after the
loop. Substituting in the aggregated expression for i and
the value of Λ𝑖𝑟𝑜𝑤𝑛𝑛𝑧 (value of irownnz before the loop) i.e.
Λ𝑖𝑟𝑜𝑤𝑛𝑛𝑧=0, in the above expressions yields:
Phase-2(loop on line 2):

{A_rownnz[0:irownnz𝑚𝑎𝑥 ]=[0:num_rows-1]#SMA,
irownnz=[0:num_rows],adiag=⊥}
Therefore, array A_rownnz in the subscript range 0 to

irownnz𝑚𝑎𝑥 is strictly monotonic and hence injective. In
the to-be parallelized loop of Figure 8, elements of array

6
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A_rownnz in the subscript range – [0:num_rownnz-1] are ac-
cessed. Since the values of irownnz𝑚𝑎𝑥 and num_rownnz are
not known at compile-time, a run-time check (-1+num_rownnz
<=irownnz𝑚𝑎𝑥 ) is inserted by the Cetus Dependence Test [6],
ensuring that only strictlymonotonic values of arrayA_rownnz
are referenced in the to-be parallelized loop.

3.2 Example 2 - from SDDMM
For the loop nest shown in Figure 10, the outermost r-loop
can be parallelized if array col_ptr whose values appear at
the subscript of array p on line 8 is monotonic. Non-strict
monotonicity suffices in this case. Array col_ptr is filled in the
loop shown in Figure 11. For this loop, the Phase-1 algorithm
determines for one loop iteration:

1 #pragma omp parallel for if(-1+n_cols <=holder𝑚𝑎𝑥 ) private(ind,
r, sm, t)

2 for (r = 0; r < n_cols; ++r){
3 for (ind = col_ptr[r]; ind <col_ptr[r+1]; ++ind){
4 sm=0;
5 for (t = 0; t < k; ++t){
6 sm += W[r*k + t]*H[row_ind[ind]*k + t];
7 }
8 p[ind] = sm * nnz_val[ind];
9 }
10 }

Figure 10. Subscripted subscript loop to parallelize from the
SDDMM application [28].

1 holder =1; col_ptr [0]=0; r=col_val [0];
2 for(i=0; i < nonzeros; i++){
3 if(col_val[i] != r){
4 col_ptr[holder ++] = i;
5 r = col_val[i];
6 }
7 }

Figure 11. Loop that fills in the subscript array col_ptr from
the SDDMM application.

Phase-1 (loop on line 2):
{col_ptr [holder]=[_𝑐𝑜𝑙_𝑝𝑡𝑟 ,⟨i⟩],holder=[_ℎ𝑜𝑙𝑑𝑒𝑟 ,⟨1+_ℎ𝑜𝑙𝑑𝑒𝑟 ⟩],
r=[_𝑟 ,⟨𝑐𝑜𝑙_𝑣𝑎𝑙 [𝑖]⟩]}

The algorithm tags the expressions – i, 1+_ℎ𝑜𝑙𝑑𝑒𝑟 and col_val[i]
that assign values to variables col_ptr, holder and r under the
loop variant if-condition on line 3.

The Phase-2 algorithm analyzes the tagged sub-expressions
and determines an intermittent monotonic relationship and
strict monotonicity for array col_ptr. The aggregated expres-
sions for col_ptr and holder after the appropriate substitutions
and simplification are as follows:

Phase-2(loop on line 2):
{col_ptr[0:holder𝑚𝑎𝑥 ]=[0:nonzeros-1]#SMA, holder=[0:nonzeros], r=⊥}

Similar to Example 1, the Cetus Dependence Test inserts
a run-time check i.e. (-1+n_cols <= holder𝑚𝑎𝑥 ) ensuring that
only strictly monotonic values of array col_ptr are accessed
in the to-be parallelized outermost loop of Figure 10.

3.3 Example 3 - from UA (NPB v3.3.1)
The UA Benchmark from the NAS Parallel Benchmarks con-
sists of subscripted subscript loops with multi-dimensional
subscript arrays. One such loop is present in the kernel transf
in the serial version of the benchmark. Due to page con-
straints, the loop is not shown here. We refer the reader to
the benchmark source code [3]. In this loop, values of array
idel appear at the subscript of another array tx. Array idel
is initialized in the loop shown in Figure 12. The analysis
begins with the innermost loop on line 4 of Figure 12. For
this loop, the Phase-1 algorithm determines for array idel:

Phase-1 (loop on line 4):
{idel[iel][0 : 5][j][i]=[_𝑛𝑡𝑒𝑚𝑝+ i∗5 + j∗25+4, _𝑛𝑡𝑒𝑚𝑝+ i∗5 + j∗25,
_𝑛𝑡𝑒𝑚𝑝+ i + j∗25+ 20, _𝑛𝑡𝑒𝑚𝑝+ i + j∗25, _𝑛𝑡𝑒𝑚𝑝+ i + j∗5+ 100,
_𝑛𝑡𝑒𝑚𝑝+ i + j∗5]}

1 for(iel = 0; iel < LELT; iel++) {
2 ntemp = 125* iel;
3 for(j = 0; j < 5; j++) {
4 for(i = 0; i < 5; i++) {
5 idel[iel ][0][j][i] = ntemp+ i*5 + j*25 + 4;
6 idel[iel ][1][j][i] = ntemp+ i*5 + j*25;
7 idel[iel ][2][j][i] = ntemp+ i + j*25 + 20;
8 idel[iel ][3][j][i] = ntemp+ i + j*25;
9 idel[iel ][4][j][i] = ntemp+ i + j*5 + 100;
10 idel[iel ][5][j][i] = ntemp+ i + j*5;
11 }
12 }
13 }

Figure 12. Loop that fills in the subscript array idel from the
kernel transf from the UA Benchmark from the NAS Parallel
Benchmarks v3.3.1. [14].

At this loop level, the value of variable ntemp is not known
and therefore, no property can be determined by the Phase-
2 algorithm for array idel. In this case, the algorithm first
attempts to simplify the expressions and deduce a single
expression that represents the range of values assigned. Since
a simplified expression cannot yet be determined, the Phase-
2 algorithm produces the following aggregated expressions
for array idel by substituting in the range of i :

Phase-2 (loop on line 4):
{idel[iel][0:5][j][0:4]=[(4+25∗j+Λ𝑛𝑡𝑒𝑚𝑝 : 24+25∗j+Λ𝑛𝑡𝑒𝑚𝑝 ),
(25∗j+Λ𝑛𝑡𝑒𝑚𝑝 : 20+25∗j+Λ𝑛𝑡𝑒𝑚𝑝 ), (20+25∗j+Λ𝑛𝑡𝑒𝑚𝑝 : 24+25∗j+Λ𝑛𝑡𝑒𝑚𝑝 ),
(25∗j+Λ𝑛𝑡𝑒𝑚𝑝 : 4+25∗j+Λ𝑛𝑡𝑒𝑚𝑝 ),(100+5∗j+Λ𝑛𝑡𝑒𝑚𝑝 : 104+5∗j+Λ𝑛𝑡𝑒𝑚𝑝 ),
(5∗j+Λ𝑛𝑡𝑒𝑚𝑝 : 4+5∗j+Λ𝑛𝑡𝑒𝑚𝑝 )]}

Note that Λ𝑛𝑡𝑒𝑚𝑝 in the above expressions is the value
of ntemp at the beginning of the innermost loop on line 4.
The loop is then collapsed and replaced with the aggregated
expressions of its LVVs. For the j-loop on line 3, the Phase-1
algorithm determines for array idel:
Phase-1 (loop on line 3):

{idel[iel][0:5][j][0:4]=[(4+25∗j+_𝑛𝑡𝑒𝑚𝑝 : 24+25∗j+_𝑛𝑡𝑒𝑚𝑝 ),
(25∗j+_𝑛𝑡𝑒𝑚𝑝 : 20+25∗j+_𝑛𝑡𝑒𝑚𝑝 ), (20+25∗j+_𝑛𝑡𝑒𝑚𝑝 : 24+25∗j+_𝑛𝑡𝑒𝑚𝑝 ),
(25∗j+_𝑛𝑡𝑒𝑚𝑝 : 4+25∗j+_𝑛𝑡𝑒𝑚𝑝 ),(100+5∗j+_𝑛𝑡𝑒𝑚𝑝 : 104+5∗j+_𝑛𝑡𝑒𝑚𝑝 ),
(5∗j+_𝑛𝑡𝑒𝑚𝑝 : 4+5∗j+_𝑛𝑡𝑒𝑚𝑝 )]}
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_𝑛𝑡𝑒𝑚𝑝 now represents the value of ntemp at the begin-
ning of an iteration of the 𝑗-loop. As no property can be
determined from any of the Phase-1 expressions above, the
Phase-2 algorithm proceeds to simplify the expressions. In
this case, simplification is successful and the following ag-
gregated expression is determined for idel after the 𝑗-loop:
Phase-2 (loop on line 3):

{idel[iel][0 : 5][0 : 4][0 : 4]=[Λ𝑛𝑡𝑒𝑚𝑝 : 124+Λ𝑛𝑡𝑒𝑚𝑝 ]}
The algorithm collapses the 𝑗-loop and begins the analysis

of the outermost loop. For the 𝑖𝑒𝑙-loop, the Phase-1 algorithm
determines for one loop iteration:

Phase-1 (loop on line 1):
{idel[iel][0 : 5][0 : 4][0 : 4]=125∗iel+[0 : 124], ntemp=125∗iel}

In the above expressions, the range [0:124]=[rl:ru] is a PNN
range and 125+0>124 (𝛼+rl>ru). Therefore, the Phase-2 algo-
rithm determines the strict monotonicity property for array
idel. The final aggregated expression for idel is:
Phase-2 (loop on line 1):

{idel[0 : LELT-1][0 : 5][0 : 4][0 : 4]=[0 : 125∗(LELT-1)] #(SMA; 0)+[0 :
124],ntemp=[0 : 125∗(LELT-1)]}

The representation [0:125∗(LELT-1)]#(SMA; 0), indicates strict
monotonicity for idel w.r.t. the dimension at position 0 (first
dimension). Strict monotonicity of array idel is sufficient
to disprove any cross-iteration dependences in the to-be
parallelized loop in the kernel transf of the UA Benchmark.

4 Evaluation
This section presents performance results after applying the
proposed array analysis algorithm on scientific applications,
including the applications discussed in the previous section.
The results show that the algorithm is successful in improv-
ing the performance of 83.33% of the benchmarks evaluated,
25% more than the method of [5] and 33.33% more than
classical automatic parallelization techniques.

4.1 Experimental Setup and Methodology
We have implemented the array analysis techniques de-
scribed in Section 2 in the Cetus automatic parallelizer [4]
and evaluated them by performing two experiments. Ex-
periment 1 measures the performance impact of the new
techniques on three applications – the Algebraic Multi-Grid
mini application (AMGmk v1.0) [22], the SDDMM applica-
tion [28] and the kernel transf from the Unstructured Adap-
tive (UA) Benchmark from the NAS Parallel Benchmarks
v3.3.1 [12, 14]. These three application codes are representa-
tive of the benchmarks comprising subscript arrays with
intermittent monotonic sequences and monotonic multi-
dimensional subscript arrays in code sections critical for
parallelization. Experiment 2 compares the performance im-
pact of the new analysis techniques with the technique of [5]
and classical automatic parallelization. The evaluation is per-
formed using 12 applications from popular benchmark suites.

Table 1 shows the benchmark suite used for our experi-
ments. The suite is a collection of fundamental benchmarks
(regular and irregular) chosen frompopular benchmark suites.
Table 1 also shows the serial application execution time for
the input datasets used. In Experiment 1, multiple datasets
were used as inputs to the AMGmk, SDDMM and UA appli-
cations. In Experiment 2, a dataset was chosen at random
from the available datasets in the source suite and used as
input for each of the 12 application codes. We used MA-
TRIX2, dielFilterV2clx and CLASS A as input datasets for
the AMGmk, SDDMM and UA applications respectively in
Experiment 2.

Benchmark Source Input Dataset Serial
Execution time

AMGmk CORAL suite [22]

MATRIX1 1.44 s
MATRIX2 3.112 s
MATRIX3 8.04 s
MATRIX4 14.5 s
MATRIX5 28.66 s

CHOLMOD
Supernodal SuiteSparse [10] spal_004∗ 12.35 s

SDDMM Nisa et al. [28]

gsm_106857∗ 1.394 s
dielFilterV2clx∗ 1.17 s

af_shell1∗ 0.755 s
inline_1∗ 1.60 s

UA(transf) NPB3.3 [14]

CLASS A 1.44s
CLASS B 9.28 s
CLASS C 43.66 s
CLASS D 874.22 s

CG NPB3.3 CLASS B 40.51 s
heat-3d PolyBench-4.2 [23] EXTRALARGE 27.85 s
fdtd-2d PolyBench-4.2 EXTRALARGE 22.83 s

gramschmidt PolyBench-4.2 EXTRALARGE 17.14 s
syrk PolyBench-4.2 EXTRALARGE 7.53 s

MG
NPB3.3 and

SPECOMP2012 [27] CLASS B 4.8 s
IS NPB3.3 CLASS C 7.662 s

Incomplete
Cholesky (C
version)

Sparselib++ [35] crankseg_1∗ 27.59 s

Table 1. Benchmarks and input data used. Asterisks indicate
data from the SuiteSparseMatrix Collection [16]. Other input
datasets are built into the benchmarks. Serial execution times
are shown.

Since our technique operates intraprocedurally, we per-
formed inline expansion, so that the to-be parallelized sub-
scripted subscript loops appear in the same subroutine as the
loops that define the subscript array. The inline-expanded
versions of the application codes have been made avail-
able [3]. The execution times for the application codes were
recorded on a compute node with a 20-core Intel Xeon Gold
6230 processors in a dual socket configuration, with a proces-
sor base frequency of 2.1 GHz, and 27.5MB cache. We used
upto 8GB of DDR4 memory. The application codes were
compiled using GCC v4.8.5 with the -O3 optimization flag
enabled on CentOS v7.4.1708 and we report the mean of 5 ap-
plication runs. We observed an average run-to-run variation
of 1.45% and we used one thread per core.
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4.2 Results of Experiment 1
Figure 13 and Figure 14 show the performance results for
the three parallel applications – AMGmk, SDDMM and the
kernel transf from the UA benchmark – which comprise
the subscripted subscript loops parallelizable using our tech-
niques. Performance improvement is defined as the execution
time of the Cetus-parallelized codes without versus with our
technique. In addition, we measure the improvement in the
performance of the Cetus parallelized codes (with our tech-
nique applied) versus the serial versions. The figures show
the performance on 4, 8 and 16 cores.
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Figure 13. Overall improvement in the performance of the
parallel application codes with v/s without subscripted sub-
script analysis applied on 4, 8 and 16 cores.
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Figure 14. Overall improvement in the performance of the
parallel application codes with subscripted subscript analysis
applied v/s the serial versions on 4, 8 and 16 cores.

When compared against the Cetus parallel code without
subscripted subscript analysis (Figure 13), our technique
leads to an overall maximum performance improvement of
58× for the AMGmk application, 9.87× for the SDDMM appli-
cation and 11.56× for the transf kernel in the UA benchmark.
The reason for this anomaly is that without subscripted sub-
script analysis applied, classical techniques detect parallelism
at the level of the inner loops of the kernel loop nests. The
substantial fork-join overhead due to the creation and termi-
nation of threads for each iteration of the outer loop leads to
a degradation in performance. When compared against the
serial versions of the application codes (Figure 14), our tech-
nique shows a performance improvement of up to 3.43× for
the AMGmk application, 8.48× for the SDDMM application
and 7.741× for the transf kernel.
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Figure 15. Parallel efficiency of the applications with in-
creasing number of cores.

Figure 15 shows the parallel efficiency (speedup / number
of cores) for each of the applications. The decline in efficiency
with increasing core count is in part due to imbalanced as-
signment of loop iterations to threads, resulting from the
sparsity pattern of the input matrices and irregular memory
accesses. Addressing this issue by implementing better load
balancing, synchronization and scheduling schemes in Ce-
tus may further increase the gain due to our technique. For
example, Figure 16 shows the impact of dynamic versus (de-
fault) static scheduling on the performance of the SDDMM
application. The key computational loop in this application
(Figure 10) operates on the nonzeros in each column of the
input sparse matrix. On average, dynamic outperforms static
scheduling by 1.24× on 4 cores, 1.548× on 8 cores and 1.82×
on 16 cores for 3 out of the 4 input matrices. For af_shell1,
static scheduling performs better due to a fairly balanced
distribution of nonzeros across the columns of the matrix.
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𝑒𝑛
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Figure 16. Dynamic vs. static scheduling (Cetus’ default)
for SDDMM on 4, 8 and 16 cores. Showing performance
improvement over serial execution.

4.3 Results of Experiment 2
Figure 17 shows the performance impact of the new array
analysis technique, the method of [5] and the classical au-
tomatic parallelization techniques in Cetus on each of the
benchmarks shown in Table 1. We recorded the performance
of the parallel applications on 16 cores with the performance
of the serial versions of the codes chosen as the baseline.
The classical automatic parallelization techniques in Cetus
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Figure 17. Performance comparison of the new array analysis algorithm with the state of the art compile-time automatic
parallelization techniques on a set of 12 fundamental benchmarks from popular benchmark suites. Here, Cetus refers to the
classical automatic parallelization techniques in the Cetus compiler [4], BaseAlgo refers to the method of [5] and NewAlgo
refers to the presented new algorithm. Cetus + NewAlgo achieves good speedups for 10 out of the 12 benchmarks evaluated.

achieve performance improvement in 6 (CG, heat-3d, fdtd-
2d, gramschmidt, syrk, MG) out of the 12 benchmarks. The
combination of classical techniques and the method of [5]
improves the performance of one additional benchmark
(CHOLMOD Supernodal). Classical techniques along with
the new techniques presented in this paper achieve perfor-
mance improvements in 3 additional applications (AMGmk,
SDDMM and UA(transf)), with a total of 10 out of 12 or
83.33% of the evaluated benchmarks.

For two benchmarks – IS and Incomplete Cholesky, none
of the techniques achieved performance improvement. The IS
benchmark comprises subscripted subscript patterns that are
too complex to be analyzed at compile-time. The Incomplete
Cholesky benchmark includes subscript arrays whose values
depend on the program input data. To determine the neces-
sary subscript array properties and parallelize the involved
loops, low overhead run-time techniques can be developed
that take advantage of the characteristics of the input data
and complement the compile-time analyses.

5 Related Work
Lin and Padua [20, 21] presented a compile-time demand-
driven interprocedural analysis technique for determining
index array properties. Their technique uses pattern match-
ing to determine properties such as injectivity, closed form
value and closed form bound. Their techniques however are
insufficient to determine index array properties in complex
loop patterns such as loops that define multi-dimensional
subscript arrays, discussed in Section 3.3. Compile-time de-
pendence testing methods have been proposed [6, 29, 43]
that take advantage of the monotonicity properties of scalar
induction variables appearing in array subscripts instead
of computing a closed form expression. These techniques
can automatically parallelize loops wherein a closed form
expression cannot be determined for the induction variables
such as the loops of Figures 9 and 11.
Saltz et al. [39] and Strout et al. [26, 40–42] presented

techniques that perform run-time inspection of the index
arrays and can determine the relevant index array properties.

This information is then used by the executor code, which is
a transformed version of the source code loop structures, to
execute the computation in an efficient manner. Generating
efficient inspectors with low algorithmic complexity is a
big challenge. Mohammadi et al. [26] proposed dependence
simplification techniques for reducing the cost of inspection.
Even with simplified inspectors, the executor code needs to
be run 40-60 times to amortize the cost of inspection and
gain performance. In general, inspector-executor techniques
are not well suited for computational kernels with small
workloads such as the ones evaluated in this paper.

Speculative execution techniques [8, 9, 15, 30, 36, 37] exe-
cute a sequential loop as parallel and apply a fully parallel
data dependence test to determine any cross-iteration depen-
dences. If the run-time test fails, then the loop is re-executed
sequentially. The technique performs the analysis and trans-
formations for each invocation of the target kernel, incurring
additional overheads. Lazcano et al. [18] proposed a run-time
multi-versioning approach that generates several optimized
versions of a target kernel and executes the one that per-
forms the best. The approach works entirely at run-time and
is capable of handling memory references with indirections.

To reduce the run-time overheads, Hybrid Analysis tech-
niques [31, 32, 38] were proposed that can extract at compile-
time the necessary assertions or monotonicity predicates
which are then evaluated at run-time to prove the indepen-
dence of array accesses. The techniques are limited in the
type of subscripted subscript patterns that can be analyzed
and can incur substantial run-time overheads especially in
cases where the generated predicates are too complex.

6 Conclusions
In this paper we have presented a compile-time array anal-
ysis technique that can analyze complex recurrence rela-
tions and derive monotonicity properties of subscript ar-
rays. The algorithm builds on a prior approach and intro-
duces two novel concepts – intermittent monotonicity of
one-dimensional and monotonicity of multi-dimensional
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subscript arrays. We have evaluated the performance im-
pact of the implemented array analysis techniques on the
AMGmk and SDDMM applications, and the kernel transf
of the UA Benchmark from the NAS Parallel Benchmarks.
Applying the techniques to these codes yields parallel pro-
grams that improve the performance by as much as 3.43× for
the AMGmk application, 8.48× for the SDDMM application
and 7.74× for the transf kernel, compared to the best alterna-
tive. Furthermore, when evaluated on a set of fundamental
benchmarks from popular benchmark suites, automatic par-
allelizers equipped with our new analysis techniques can
substantially improve the performance of more than 80% of
the benchmarks, 25-33.33% more than possible with state-of-
the-art techniques. Our techniques are the first fully auto-
mated compile-time only techniques capable of determining
the monotonicity properties of one-dimensional and multi-
dimensional subscript arrays, sufficient for automatically
parallelizing a class of irregular applications.
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