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Abstract. This paper describes COMPASS – a suite of irregular bench-
marks comprising special patterns referred to as subscripted subscript
patterns. When the values of an array appear at the subscript of another
array in a for-loop, e.g. a[b[i]] with cross-iteration accesses to the host
array (array a), such a pattern is referred to as a subscripted subscript
pattern. These patterns represent an important class of dynamic, irreg-
ular memory access patterns observed in scientific applications and pose
a challenge for optimizing compilers. The suite is a collection of sub-
scripted subscript benchmarks from various application domains such as
Machine Learning, Linear System Solvers, Adaptive Mesh Refinement,
Sorting Algorithms and Sparse Matrix computations. The primary pur-
pose of this suite is to promote the development of advanced compiler
analysis and transformation techniques that enable parallelization of the
subscripted subscript loops as well as techniques for improving local-
ity and thread synchronization. We present the necessary and sufficient
conditions for eventual parallelization of the subscripted subscript loops
and discuss techniques described in the literature for determining said
conditions. Experimental results show that subscripted subscript loops
appear in key program sections and parallelizing them leads to a sub-
stantial improvement in the performance of the overall applications.
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1 Introduction

Benchmark suites are most frequently designed for the scientific study and evalu-
ation of new and existing technologies – hardware and software. Examples of such
benchmark suites include the NAS Parallel Benchmarks [3], the SPEC Bench-
marks [2, 35], the PARSEC Benchmarks [7], the Rodinia Benchmarks [9] and
others. These benchmarks can measure the overall performance as well as quan-
tify the contribution of a certain technology. By contrast, benchmark suites such
as the Barcelona OpenMP task suite [13], the EPCC microbenchmark suite [8],
the Polybench suite [21], are specialized benchmarks designed for specific pur-
poses and drive new technologies. These benchmarks play an important role
in the High Performance Computing (HPC) community when it comes to the
development of new compilation techniques for efficient code generation and
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measuring performance impact. Often times, when developing a new technique,
compiler developers need to scan through a number of benchmarks to collect the
ones which fit the requirements for the evaluation of their technique. The chosen
benchmarks should be able to demonstrate the impact as well as exhibit the
limitations of the proposed techniques. In addition, they should foster further
refinement of the current techniques and development of more sophisticated tech-
niques in the future. The Combined Parallel Subscripted Subscript benchmark
suite (COMPASS) is a suite of specialized benchmarks for the development and
evaluation of compiler techniques for improving the performance of applications
with subscripted subscript patterns.

1 for (j = 0; j < numPlaced; j++)
2 y[ind[j]] += gamma2[i] * exp(-((xdos[ind[j]]-t)*
3 (xdos[ind[j]] - t))/sigma2);

Fig. 1: Example Subscripted subscript loop from the EVSL library [18]. Values
of array ind appear at the subscript of array y on line 2.

A number of scientific applications make use of data structures such as ar-
rays, graphs, trees and grids to perform computations on sparse, unstructured
input data. The use of such data structures introduces unpredictable memory ac-
cess patterns which complicates the process of optimizing and parallelizing the
application codes. A class of such dynamic, irregular access patterns are sub-
scripted subscript patterns, wherein - an array value appears in the subscript of
another array in a for-loop, with cross-iteration write accesses to the host array.
Figure 1 shows an example subscripted subscript loop. In this work we intro-
duce the various types of subscripted subscript patterns observed in scientific
applications and describe the necessary and sufficient conditions for paralleliz-
ing loops with such patterns. In addition, we present compiler techniques that
have been proposed in the literature for analyzing the input program and ver-
ifying the existence of the required conditions for parallelization. Some of the
proposed compile-time techniques [19,20] have been evaluated using benchmark
suites such as the PERFECT benchmarks [4] that suffer from a number of limita-
tions and are no longer representative of the workloads of today. In other work,
run-time techniques [23, 37] have been evaluated using applications from two
domains – iterative solvers, and preconditioners for sparse linear systems. This
paper presents a subscripted subscript benchmark suite that represents modern
workloads and includes applications from a variety of problem domains.

The COMPASS suite [1] is a collection of applications from popular packages
and benchmark suites, composed of subscripted subscript loops with increasing
levels of complexity. The suite encompasses applications such as sparse matrix-
vector multiplication which is at the core of many sparse matrix computations
and linear algebra operations, a sorting algorithm that is important in particle
method codes in physics, and computations on unstructured meshes – vital part
of computational fluid dynamics applications. The chosen applications contain
subscripted subscript loops that represent the computationally intensive parts of
the application. Furthermore, in these applications the compiler, upon availabil-
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ity of the necessary information, stands a chance of parallelizing the subscripted
subscript loops. The purpose of this suite is to drive the development of op-
timizing compilers including such techniques as – advanced symbolic analysis,
automatic parallelization, improving data locality, thread synchronization and
improving data structure navigation in applications.

In summary, this paper makes the following contributions:

– We present and characterize COMPASS, a benchmark suite for the devel-
opment of analysis and transformation techniques for improving the perfor-
mance of applications with subscripted subscripts.

– We present the necessary and sufficient conditions for parallelization of the
subscripted subscript loops appearing in the COMPASS benchmarks, and
discuss the various analysis techniques proposed in the literature for deter-
mining and verifying said conditions.

– We evaluate the performance potential of parallelizing the subscripted sub-
script loops and discuss their impact on the overall application performance.

2 The Benchmarks

2.1 Overview

The COMPASS suite includes a set of programs that are representative of a class
of irregular applications and the subscripted subscript patterns they contain. Ta-
ble 1 lists the benchmarks in the COMPASS suite. The suite consists of a total of
six application codes chosen from a range of application domains. The included
benchmarks have either been extracted from publicly available suites, such as the
NAS Parallel Benchmarks (NPB) [26] and the SuiteSparse Benchmark Suite [12]
or are kernels derived from larger applications, such as the Algebraic Multi-Grid
Solver (AMG) [40] and Sparse Factor Analysis (SFA) [28]. The NPB suite con-
sists of benchmarks for solving systems of partial differential equations (PDEs)
using various numerical algorithms, solving problems on unstructured grids, sort-
ing a set of integers and solving systems of linear equations. We have included
the Integer Sort (IS) and Unstructured Adaptive (UA) benchmarks from NPB
in the COMPASS suite. AMG is a parallel Algebraic Multi-Grid solver for linear
systems arising from problems on unstructured grids. The COMPASS suite in-
cludes the sparse matrix-vector multiplication kernel from an abridged version of
AMG – AMGmk. SuiteSparse is a suite of sparse matrix algorithms for solving
systems of linear equations. We have included the Supernodal Cholesky factoriza-
tion application from SuiteSparse in the COMPASS suite. Sparselib++, written
in C++, is a library of numerical linear algebra algorithms for efficient sparse
matrix computations across various computational platforms. The COMPASS
suite includes the C-translated version of the Incomplete Cholesky factoriza-
tion kernel from Sparselib++. Many scientific applications involve multiplying a
sparse matrix with one or more dense matrices. The COMPASS suite includes a
Sampled Dense-Dense Matrix Multiplication (SDDMM) benchmark, which per-
forms the element-wise multiplication of an input sparse matrix with two dense
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matrices. The SDDMM computation is at the core of many machine learning
and data mining applications.

1. Input Data Sets: The NPB suite specifies various problem sizes, small test
problems to large problems, defined in terms of classes [26]. Of the classes
designated for experiments, Class A is the smallest whereas Class F is the
largest. The Supernodal Cholesky factorization, SDDMM and Incomplete
Cholesky factorization applications require input dense and sparse matrices
that satisfy various criteria as defined by the involved algorithm. The dense
matrices have been built into the benchmarks. The required sparse matrices
can be obtained from the SuiteSparse Matrix collection [17], a large reposi-
tory of sparse matrices from various application domains. For the AMGmk
benchmark, we define a set of three internally generated input sparse matri-
ces in increasing order of their sizes (number of rows × number of columns).

2. Verification: An important characteristic of any benchmark suite is the
verification method employed to test the correctness of specific implemen-
tations and applied optimizations. All benchmarks in the COMPASS suite
include some form of self-validation to test for the correctness of the output,
eliminating the need for manual checks.

Benchmark Origin Original
language

Domain No. of lines of
Code

Input(s) No. of parallel
subscripted

subscript loops or
loop nests

AMGmk AMG [40] C Sparse Matrix
computation

1800 Sparse Matrix,
Dense Vector

2

Integer Sort (IS) NAS Parallel
Benchmarks v3.3 [3]

C Sorting Algorithms 1000 Integers 4

CHOLMOD
Supernodal

SuiteSparse [12] C Linear System
Solvers

1138
(computation)

Sparse Matrix 3

Unstructured
Adaptive (UA)

NAS Parallel
Benchmarks v3.3 [3]

C Adaptive Mesh
Refinement

8000 Meshes of
different sizes

13

SDDMM (C
version)

Nisa et al. [28] CUDA Machine Learning
and Data Mining

250 Sparse and
Dense Matrices

1

Incomplete
Cholesky (C

version)

Sparselib++ [31] C++ Linear System
Solvers

300 Sparse Matrix 1

Table 1: Applications in the COMPASS Benchmark Suite.

2.2 Benchmark Description

1. AMGmk v1.0: The AMGmk mini application based on the AMG [40]
benchmark, consists of three compute intensive kernels – Matvec, Relax and
Axpy of which, the Matvec kernel comprises of parallelizable subscripted
subscript loops. KernelMatvec performs the multiplication of a sparse matrix
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and a dense vector (SpMV) and is the most frequently used kernel in the
AMG solve phase [14]. The Compressed Sparse Row (CSR) format is used
to store the sparse matrix in memory. Sparse matrices of different sizes used
as inputs to the kernel comprise of laplacians. The input vector used in this
case is a randomly generated column vector.

2. Integer Sort (IS): The IS benchmark from NPB v3.3 sorts a large num-
ber of integers – 223 (CLASS A) to 231 (CLASS D) using bucket sort. The
benchmark uses 210 buckets to sort the integers, referred to as keys, gener-
ated randomly using a portable random number generator. The benchmark
requires sorting the key array ten times, each time with a slight modification
to the input data. Verification is performed after every run as well as after
the completion of the ten sorting runs.

3. CHOLMOD Supernodal: CHOLMOD [10] derived from the SuiteSparse
benchmark suite is a package that provides Cholesky factorization methods
for solving large sparse linear systems. Given a sparse, symmetric positive
definite matrix A, its Cholesky factorization is represented as A = LLT ,
where L is a real lower triangular matrix with positive diagonal entries. The
supernodal cholesky factorization algorithm improves upon other cholesky
factorization methods and delivers substantial parallel performance by im-
plementing and taking advantage of the “supernodal” structure of L. A su-
pernode of a sparse cholesky factor L is the set of columns in L that exhibit
the same sparsity structure [27].

4. Unstructured Adaptive (UA): The UA benchmark from NPB v3.3 com-
putes the solution of a partial differential equation on an adaptively con-
structed non-uniform mesh. Meshes are high-dimensional geometric struc-
tures formed by an interconnected grid of elements in time and space. An
important characteristic of the subscripted subscript patterns in the UA
benchmark is that the patterns use multi-dimensional subscript arrays.

5. Sampled Dense-Dense Matrix Multiplication (SDDMM): first per-
forms the multiplication of two dense matrices, and then scales the result
by an input sparse matrix. For e.g. O = ((BAT )·S) where, B and A are the
dense matrices and S is the input sparse matrix. The output matrix O in
this case is a sparse matrix having the same sparsity pattern as S. SDDMM
is the core computation in the formulation of factorization algorithms such
as Sparse Factor Analysis (SFA) and Alternating Least Squares (ALS) used
in machine learning and data mining applications [28].

6. Incomplete Cholesky (IChol): Iterative methods are commonly used to
determine the solution of sparse symmetric linear systems of the form Ax=B,
where A is an m×n sparse matrix, B is an m×1 vector and x is an n×1 vector
to be determined. The solution in this case can be rapidly approximated by
using a preconditioner. The Incomplete Cholesky factorization represents
an important class of preconditioners for positive definite systems [34]. The
factorization considers only the non-zero entries of the input sparse matrix
for determining the solution of the linear system.
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The COMPASS suite incorporates benchmark codes comprising paralleliz-
able subscripted subscript loops. A number of applications with subscripted
subscripts were not included in the COMPASS suite due to the inherent sequen-
tial nature of the involved patterns. Yet other applications made use of complex,
language-specific data structures and object oriented constructs, limiting the
opportunities for compilers to exploit parallelism.

3 Parallelization of Subscripted Subscripts

This section introduces the different types of subscripted subscript patterns ob-
served in the COMPASS benchmark codes and describes the necessary and suf-
ficient conditions for disproving cross-iteration dependences w.r.t. the enclosing
loop or loop nest. The subscript expressions involve arrays with either single
or multiple levels of indirection. In addition, the subscript arrays can be either
one-dimensional or multi-dimensional.

3.1 Patterns with Single Level of Indirection

The simplest form of a subscripted subscript pattern involves an array whose
values appear either directly or indirectly at the subscript of another array.
Whereas, in some other patterns, the subscript array is part of an expression.
These patterns comprise a single level of indirection i.e. only one index array.

1 for(i = 0; i < num_rownnz; i++){
2 tempx = y_data[A_rownnz[i]];
3 for(jj=A_i[A_rownnz[i]]; jj <A_i[A_rownnz[i]+1]; jj++){
4 tempx += A_data[jj] * x_data[A_j[jj]];
5 }
6 y_data[A_rownnz[i]] = tempx;
7 }

Fig. 2: Subscripted subscript loop from the AMGmk [40] application. Values of
array A rownnz appear explicitly at the subscript of array y data on lines 2 and
6.

(a) Patterns with One-dimensional subscript arrays: Values of a subscript array
can appear directly or explicitly at the subscript of another array. For the
loop shown in Figure 2, values of array A rownnz appear directly at the
subscript of array y data on lines 2 and 6. The outer loop on line 1 can be
parallelized if no two iterations of the loop access the same element of array
y data. In other words, there is no self-output dependence. This is possible
only if array A rownnz is injective i.e. A rownnz[i] ̸= A rownnz[i′], ∀i ̸= i′

and i, i′ ∈ [0:num rownnz-1]. Injectivity of array A rownnz is sufficient for
parallelizing the outermost i-loop in this case. Injectivity can appear in the
form of strict monotonicity wherein, A rownnz[i] < A rownnz[i′], ∀i < i′.
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Note that the potential anti-dependence w.r.t. array y data in this case is
not a cross-iteration dependence.

The loop shown in Figure 3 is an example of an indirect subscripted subscript
pattern. Values of array col ptr appear at the subscript of array p on line
7 via variable ind, the loop index of the inner loop on line 2. To parallelize
the outermost r-loop, the range of values of array col ptr accessed in an
arbitrary iteration r – [col ptr[r] : col ptr[r+1]-1] should not overlap with the
range accessed in any other iteration of the loop. This condition is satisfied
if array col ptr is monotonically increasing, meaning, col ptr[r] ≤ col ptr[r′],
∀r < r′ and r, r′ ∈ [0:n cols - 1]. Non-strict monotonicity suffices in this case.

1 for (r = 0; r < n_cols; ++r){
2 for (ind = col_ptr[r]; ind <col_ptr[r+1]; ++ind){
3 sm=0;
4 for (t = 0; t < k; ++t){
5 sm += W[r*k + t]*H[row_ind[ind]*k + t];
6 }
7 p[ind] = sm * nnz_val[ind];
8 }
9 }

Fig. 3: Subscripted subscript loop from the SDDMM [28] application. Values of
array col ptr appear at the subscript of array p on line 7 via the loop index of
the inner loop ind on line 2.

1 for (ie = 0; ie < nelt; ie++) {
2 for (iface = 0; iface < NSIDES; iface ++) {
3 for (i = 1; i < LX1 -1; i++) {
4 il = idel[ie][iface ][i][LX1 -1];
5 for (j = 0; j < LX1; j++) {
6 tx[il] = tx[il] + qbnew[ije1][j][i-1]* tmp[ije1][j][col];
7 }
8 }
9 }

10 }

Fig. 4: Subscripted subscript loop from the UA application [15] from the NAS
Parallel Benchmarks. Values of a 4-dimensional array idel on line 4 appear at
the subscript of another array tx on line 6 via the scalar variable il.

(b) Patterns with Multi-dimensional subscript arrays: Applications such as UA
in the COMPASS suite contain subscripted subscript patterns with multi-
dimensional subscript arrays. The host array can be either one-dimensional
or multi-dimensional. An example of such a loop pattern is shown in Figure 4.
Values of a 4-dimensional array idel on line 4 appear at the subscript of
another array tx on line 6. The first three dimensions of array idel – ie, iface
and i are the loop indices of the loops on lines 1, 2 and 3. To parallelize a
loop in this case, array idel should be injective w.r.t. the dimension indexed
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by the loop index variable. As an example, to parallelize the outermost ie-
loop, array idel should possess injectivity w.r.t. the dimension indexed by
ie or dimension at the first position. If this condition is satisfied, no cross-
iteration output dependences will exist w.r.t array tx and the outermost loop
can then be parallelized.

(c) Patterns with Subscript Expressions: Some benchmarks comprise subscripted
subscript patterns wherein, the subscript array (say array B) is part of an
expression of the form α∗B[i] + β∗j, where i, j are index variables of the
enclosing loops and α and β are loop invariant values. For the loop shown
in Figure 5, values of array mt to id old appear at the subscript of array
ref front id on line 8. Additionally, the subscript array front is part of two
expressions, one on line 3 and another one on line 5. The values of these two
expressions appear at the subscript of arraymt to id on line 7. The outermost
loop can be parallelized if array mt to id old is injective and the expressions
on lines 3 and 5 produce sets of values which are not only injective but also
mutually exclusive.

1 for(miel = 0; miel < nelt; miel ++) {
2 if (ich[mt_to_id_old[miel]] == 4) {
3 mielnew = miel + (front[miel]-1)*7;
4 } else {
5 mielnew = miel + front[miel ]*7;
6 }
7 mt_to_id[mielnew] = mt_to_id_old[miel];
8 ref_front_id[mt_to_id_old[miel]] = nelt+ntemp;
9 }

Fig. 5: Subscripted subscript loop from the UA benchmark [15] from the NAS
Parallel Benchmarks. Values of subscript array mt to id old appear explicitly at
the subscript of array ref front id on line 8. In addition, values of two subscript
expressions can appear at the subscript of array mt to id on line 7. The two
expressions, one on line 3 and another one on line 5 produce sets of values which
are injective and mutually exclusive.

3.2 Patterns with Multiple Levels of Indirection

Some benchmark applications involve loop nests with arrays consisting of mul-
tiple levels of indirection in their subscripts, such as A[B[C[i]]]. An example of
such a loop pattern is shown in Figure 6 wherein, values of subscript arrays
colPtr and rowIdx appear at the subscript of array val on line 11 via k, the loop
index of the inner loop on line 8. Array val is defined and used in statements on
lines 2, 5 and 11. The outermost i-loop in this case cannot be parallelized due to
cross-iteration flow and anti-dependences w.r.t. array val. However, the inner m-
loop on line 7 can be parallelized if – (a) subscript array colPtr is monotonic, (b)
array rowIdx is strictly monotonic i.e. rowIdx[colPtr[i]+1] < rowIdx[colPtr[i+1]-
1], ∀i ∈ [0:n-1] and (3) rowIdx[m] ≥ i+1. If the aforementioned constraints are
satisfied, the section of array val that is read on line 11 will never overlap with
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the section of the array which is modified for all iterations of the m-loop on line
7. In addition, no two iterations of the loop will modify the same element of
array val, eliminating any possible output dependence.

1 for(i = 0; i < n; i++){
2 val[colPtr[i]] = sqrt(val[colPtr[i]]);
3
4 for(m=colPtr[i]+1; m<colPtr[i+1]; m++){
5 val[m] = val[m]/val[colPtr[i]];
6 }
7 for(m = colPtr[i]+1; m<colPtr[i+1]; m++) {
8 for(k = colPtr[rowIdx[m]]; k<colPtr[rowIdx[m]+1]; k++){
9 for(l = m; l<colPtr[i+1]; l++){

10 if(rowIdx[l]== rowIdx[k]&& rowIdx[l+1]<= rowIdx[k]){
11 val[k] -= val[m]* val[l];
12 }}}}}

Fig. 6: Subscripted subscript loop from the Incomplete Cholesky implementation
from the SparseLib++ library [23, 31]. Values of two arrays colPtr and rowIdx
appear at the subscript of array val on line 11 via k, the loop index of the
inner loop on line 8. The m-loop on line 7 can be parallelized if array colPtr is
monotonic, array rowIdx is strictly monotonic and rowIdx[m] ≥ i+1, ∀i ∈ [0:n-1].

From the above discussion, it can be inferred that for a subset of the sub-
scripted subscript loops, knowing a property of the subscript array such as Non-
strict Monotonicity is sufficient information for parallelization (loop of Figure 3).
Whereas, in the loop of Figure 5, knowing a property for the subscript array is
not sufficient information. The subscript array as well as the subscript expres-
sion(s) should produce non-overlapping or injective values across loop iterations
for eventual parallelization.

4 Index Array Analysis Techniques

We review the various index array analysis techniques presented in the liter-
ature for determining and verifying the necessary and sufficient conditions for
parallelization of subscripted subscripts discussed in the previous section. The
techniques fall into one of three categories – compile-time, run-time or hybrid.

4.1 Compile-time Analysis Techniques

Compile-time analysis techniques rely on static information about index arrays
such as a property or range of possible values, which is then used to test for
the presence or absence of dependences in the subscripted subscript loops where
the index arrays appear. This information is either derived from the application
code itself or is provided by the user.

Demand-driven Array Property Analysis: Lin and Padua [19,20] presented
a demand-driven interprocedural query propagation technique for analyzing in-
dex arrays and determining index array properties. Their technique analyzes
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program patterns that define index arrays. The technique has three main parts
– (i) The QueryGenerator, which generates a query when a test needs to verify
whether an index array has a property at a certain point (ii) The QuerySolver
which traverses the program in the reverse order of the control flow to verify
the query and (iii) The PropertyChecker to get the GEN and KILL informa-
tion about the arrays and check for the property. If a property is available,
the QuerySolver returns true to the QueryGenerator, otherwise it returns false.
Their technique can determine properties such as injectivity, closed form value
and closed form bound by using pattern matching. For example, their technique
can determine injectivity of an index array only when the array is defined in an
index gathering loop (loop that assigns values of the index variable to the array).
When evaluated on a set of 4 benchmarks (3 from the PERFECT suite [4] and 1
from NCSA), their technique could determine the properties – closed form value
and closed form bound for the index arrays, and led to significant performance
improvement in 2 out of the 4 benchmarks evaluated.

Using User-defined Assertions: Properties of index arrays can be expressed
as user-defined assertions which can be tested at run-time [22]. Mohammadi
et al. [23] presented a technique that leverages constraint-based data depen-
dence analysis to find parallelism in subscripted subscript loops. The depen-
dence relations for every loop in an input application code are extracted using
the CHILL polyhedral compiler framework [38]. The extracted loop dependences
and the corresponding user-defined assertions are provided as inputs to a Z3 SMT
solver [25] which tests if the constraints are satisfiable or unsatisfiable. If all of the
dependences for a loop are unsatisfiable under the specified constraints, the loop
can be parallelized. When applied to the computationally intensive loop from the
Incomplete Cholesky factorization application shown in Figure 6, their technique
shows a significant improvement in the overall application performance.

Recurrence Recognition: Bhosale and Eigenmann [5, 6] proposed an algo-
rithm based on symbolic range aggregation that can determine subscript array
properties by analyzing loops that initialize and modify the content of the sub-
script array. In most cases, program statements that create a property such
as monotonicity, comprise recurrence relationships where, the next value in the
sequence is computed from the previous value plus a positive or non-negative
increment. Array recurrences are of particular interest. Their technique can au-
tomatically parallelize subscripted subscript loops and improve the performance
of the AMGmk, CHOLMOD Supernodal, SDDMM and UA benchmarks from
the COMPASS suite.

4.2 Run-time Analysis Techniques

In some benchmarks, the subscript array is initialized and modified in loop pat-
terns that are too complex to analyze at compile-time. Whereas, in some other
applications, either the value assigned to the subscript array is input-dependent
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or the subscript array itself is read from an input file. In such cases where,
compile-time analysis is conservative and assumes dependences due to insuffi-
cient information about the subscript arrays, run-time techniques can be used
to verify the necessary and sufficient conditions for parallelization.

Inspector-Executor Approach: The inspector-executor technique was first
introduced by Saltz et al. [33] and used extensively in the sparse polyhedral
framework by Strout et al. [36, 37, 39]. The technique implements an inspector
code which traverses the index array at run-time to determine the data access
patterns. In doing so, the relevant index array properties can be realized. This
information can then be used by the executor code, which is a transformed ver-
sion of the source code loop structures, to execute the computation in an efficient
manner. A challenge in this case is the complexity of the generated inspectors. In
applications such as Incomplete Cholesky factorization, the cost of inspection is
higher than the gains realized by parallelization of the computational kernel. Mo-
hammadi et. al. [24] proposed techniques for simplifying dependence constraints
and generating efficient inspectors. Their techniques were successful in reducing
the complexity of the originally generated inspectors. However, in three of the
seven benchmarks evaluated (the three benchmarks being iterative solvers), the
inspector overhead is still significantly greater than the execution time of the
kernel. For these benchmarks, the parallel executor has to be run multiple times
to realize the performance gains over the serial code. Due to this drawback, this
technique is not well suited for computational kernels with smaller workloads.

Speculative Execution: The distribution of the original loop into an inspector
and executor loop is often disadvantageous. As mentioned earlier, in many cases,
the generated inspector can be both computationally expensive and with side-
effects. In addition, extracting the appropriate inspector automatically can be a
challenge in some applications. Rauchwerger et al. [11,32] presented a framework
for speculatively executing a sequential loop as parallel and applying a fully
parallel data dependence test to determine if the loop had any cross-iteration
dependences. If the run-time test fails, then the loop is re-executed sequentially.
Even with the possibility of a heavy penalty if the dependence test fails, the
authors argue that speculative execution followed by run-time analysis is the
only viable solution for many subscripted subscript loops.

4.3 Hybrid Analysis Techniques

Hybrid Analysis techniques presented by Oancea and Rauchwerger [29, 30] aim
to perform both compile-time and run-time analysis with a time complexity
that is as close as possible to that of compile-time analysis. Their techniques
are capable of determining monotonicity of array references. A summary of the
array accesses in a loop is constructed using interprocedural dataflow analysis,
expressed in the form of symbolic sets. The aggregated sets are used by the run-
time analysis to test for the presence of monotonicity. Their techniques make
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use of pattern matching at the level of the symbolic sets to determine where to
insert the monotonicity tests. Their techniques could determine monotonicity of
subscript arrays in the TRFD and DYFESM benchmarks from the PERFECT [4]
benchmark suite.

5 Evaluation

We evaluate the performance potential of parallelizing the subscripted subscript
loops appearing in the COMPASS applications. Our results show that sub-
scripted subscript loops represent major performance bottlenecks in the appli-
cation codes; parallelizing them leads to a significant improvement in the overall
application performance.

5.1 Experimental Setup

The evaluation is performed in two steps – (1) profiling the application codes to
determine the total execution time of the subscripted subscript loops relative to
the application execution time and (2) determining the performance improve-
ment of the application codes after hand parallelizing the subscripted subscript
loops, showing the performance potential of the parallel loops. Table 2 lists the
problem classes and sparse matrices used as inputs for our experiments. For
the Integer Sort and Unstructured Adaptive benchmarks, we used the problem
classes A, B and C defined in the NPB suite as input datasets. For the AMGmk
benchmark we used three internally generated sparse matrices as inputs to the
application code. For the CHOLMOD Supernodal, SDDMM and Incomplete
Cholesky benchmarks, we used large sparse matrices from the SuiteSparse ma-
trix collection [17] as inputs. The selected input matrices satisfy the criteria
related to the size, shape, structure and type of entries in the matrix, as defined
by the involved algorithm.

We used the Intel Vtune profiler [16] with user-mode sampling enabled to
collect the profiling results for the application codes. The default scheduling
scheme for the parallel applications was set to static scheduling except in the
Incomplete Cholesky application. For this application, the scheduling scheme
was set to cyclic (static scheduling with a chunk size of 1), the reason being
that cyclic scheduling outperforms all other scheduling schemes across all input
matrices and varying number of cores. The execution times were recorded on a
compute node with a 20-core Intel Xeon Gold 6230 processors in a dual socket
configuration, with a processor base frequency of 2.095 GHz, 27.5MB cache and
we used upto 16GB of DDR4 memory. The application codes were compiled using
GCC v4.8.5 with the -O3 optimization flag enabled on CentOS v7.4.1708 and
we report the mean of 5 application runs. We observed a maximum run-to-run
variation of 2% and we used one thread per core.
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5.2 Results

Table 2 shows the profiling results for the serial COMPASS benchmarks for the
input classes and sparse matrices.

Benchmark Input Classes/Matrices Total CPU time
taken by the
application (s)

Time taken by the
parallelizable Subscripted
Subscript loops (s/%)

Total Memory
consumption

AMGmk
MATRIX3

(5M×5M, 6.94M nnz)
7.61 s 4.42 s /58.1% 227.3 MB

MATRIX4
(8.64M×8.64M, 12M nnz)

14.030 s 8.01 s /58.01% 393 MB

MATRIX5
(16.8M×16.8M, 23.49M nnz)

27.15 s 15.731s /57.94% 768 MB

Integer Sort
CLASS A 1.36 s 0.5 s /36.76% 4.1 KB

CLASS B 5.49 s 2.19 s /39.98% 4.1 KB

CLASS C 22.26 s 9.16 s /41.15% 4.1 KB

CHOLMOD Supernodal
spal 004

(10.2k×321.6k, 46.1M nnz)
11.11 s 10.69 s /96.21% 4.7 GB

12month1
(12.4k×872.6k, 22.6M nnz)

12.28 s 11.61 s /94.54% 4.8 GB

TSOPF RS b2052 c1
(25.6k×25.6k, 6.76M nnz)

69.66 s 58.46 s /83.92% 4.8 GB

Unstructured Adaptive
CLASS A 14.23 s 2.15 s /15.1% 32.8 KB

CLASS B 75.93 s 14.11 s /18.58% 32.8 KB

CLASS C 351.47 s 62.201 s /17.69% 32.8 KB

SDDMM
nd24k

(72k×72k, 14.39M nnz)
1.25 s 1.19 s /95.2% 518 MB

msdoor
(415.8k×415.8k, 10.3M nnz)

0.89 s 0.86 s /96.62% 954.6 MB

F1
(343.79k×343.79k, 13.5M nnz)

1.21 s 1.19 s /98.34% 930.6 MB

Incomplete Cholesky
m t1

(97.5k×97.5k, 4.92M nnz)
6.33 s 4.91 s /77.56% 1.6 GB

crankseg 1
(52.8k×52.8k, 5.33M nnz)

27.27 s 25.66 s /94.1% 1.7 GB

nd6k
(18k×18k, 3.45M nnz)

36.51 s 35.05 s /96% 1.1 GB

Table 2: Profiling results for the serial COMPASS benchmarks. The measure-
ments were gathered using the Intel VTune profiler [16] on a single core. For
input sparse matrices, we have mentioned the size of the matrix (number of
rows × number of columns) and the number of non-zeros (nnz) in the matrix.
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The table also shows the total memory consumed by the application codes.
We report the single core execution time of the parallelizable subscripted sub-
script loops relative to the total application execution time. The SDDMM, In-
complete Cholesky and CHOLMOD Supernodal applications spend substantial
time in I/O operations such as reading in the input sparse matrix, in addition
to the actual computation. For these applications, we report the execution time
of the actual computation. From Table 2 it can be inferred that subscripted
subscript loops represent a major performance bottleneck in the COMPASS
benchmarks taking anywhere between 15.1% to 98.34% of the total application
execution time.
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Fig. 7: Improvement in the performance of the application codes observed after
parallelizing the subscripted subscript loops. The baseline here is the execution
time of the fully serial code.

Figure 7 shows the performance results of the COMPASS application codes
for the various inputs. We set the execution time of the fully serial code as
the baseline for our experiments. Performance improvement is the comparison
of the execution time of the application codes after hand parallelizing the key
subscripted subscript loops against the baseline. We report the performance
improvement on 4, 8 and 16 cores. For the SDDMM, Integer Sort and Incom-
plete Cholesky Factorization applications, we obtained a maximum performance
improvement of 8.01×, 10.76× and 12.22× respectively for the input classes/s-
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parse matrices. In addition, the performance scales with increase in the number
of cores.

In contrast, for the CHOLMOD Supernodal application, performance scales
for all the input sparse matrices except TSOPF RS b2052 c1. For this matrix,
the application performance on 16 cores is about 11.56% less than the perfor-
mance on 8 cores. Similar result is obtained for the AMGmk benchmark with
input matrix – MATRIX5 wherein, the performance of the application on 8 cores
is about 9.25% less than the performance on 4 cores. The reason for this discrep-
ancy is in part due to load imbalance issues, resulting from the sparsity pattern
i.e. the distribution of nonzeros across the columns (or rows) of the input sparse
matrices.

For the Unstructured Adaptive benchmark, we obtained a maximum per-
formance improvement of 1.2× and the performance scales with increase in the
number of cores for each of the input classes. In this benchmark, the paralleliz-
able subscripted subscript loops take between 15.1% to 18.58% of the total ap-
plication execution time. Therefore, parallelizing the subscripted subscript loops
leads to a maximum improvement in the performance of the application code
by about 7.1% for input Class A, 15.7% for Class B and 20% for Class C over
the serial baseline. A key evaluation result here is that the parallel execution of
subscripted subscript loops yields significant improvement in the performance of
the overall applications.

6 Conclusions

We presented the COMPASS (Combined Parallel Subscripted Subscript) bench-
mark suite, a collection of irregular applications with subscripted subscripts.
The suite can aid programmers in the development and evaluation of advanced
compiler techniques aimed at exploiting parallelism and data locality, in order
to improve the performance of such applications. In addition, we presented a
detailed analysis of the subscripted subscript patterns appearing in the bench-
mark codes, and identified the necessary and sufficient conditions for paralleliz-
ing loops with such patterns. Our results show that subscripted subscript loops
represent a major performance bottleneck in scientific applications. Parallelizing
these loops led to good speedups for most applications, though in some cases we
observed a drop in the application performance due to load imbalance issues.
The COMPASS suite can also foster the development of analysis techniques for
better synchronization and scheduling of loop iterations for further performance
improvements.

7 Artifact Description

The artifact for COMPASS is hosted on a GitHub repository which can be found
at https://github.com/akshay9594/COMPASS. A README with instructions
for compiling and executing the COMPASS application codes (both the serial
and parallel versions used in this paper) has been provided in the repository.
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